13 research outputs found

    Error and attack tolerance of complex networks

    Full text link
    Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.Comment: 14 pages, 4 figures, Late

    A locality aware cache diffusion system

    Full text link
    Web caching is a widely deployed technique to reduce the load to web servers and to reduce the latency for web browsers. Peer-to-Peer (P2P) web caching has been a hot research topic in recent years as it can create scalable and robust designs for decentralized internet-scale applications. However, many P2P web caching systems suffer expensive overheads such as lookup and publish messages, and lack locality awareness. In this paper, we present the development of a locality aware cache diffusion system that makes use of routing table locality, aggregation, and soft state to overcome these limitations. The analysis and experiments show that our cache diffusion system reduces the amount of information processed by nodes, reduces the number of index messages sent by nodes, and improves the locality of cache pointers

    Self-Protecting Multipaths -- A Simple and Resource-Efficient Protection Switching Mechanism for MPLS Networks

    No full text
    In this paper we propose the concept of an end-to-end (e2e) Self-Protecting Multi-Path (SPM) as a protection switching mechanism that may be implemented, e.g., in Multiprotocol Label Switching (MPLS) networks. In case of local outages, resilient networks redirect the traffic from a failed link over an e2e backup path to its destination. In this case, Quality of Service (QoS) can only be provided if sufficient extra capacity is available. If backup capacity can be shared among different backup paths, multi-path routing allows for considerable savings regarding this extra capacity. The SPM consists of disjoint paths that carry the traffic both in normal operation mode and during local outages. If a partial path is affected by a network failure, the traffic is just distributed to the remaining working paths. This structure is easy to configure and the switching to failure mode operation is simple since no signalling is required. Based on analytical results, we show that load balancing of the traffic across the disjoint paths can reduce the required backup capacity significantly. The backup performance depends strongly on the network topology, and the SPM outperforms simple Open Shortest Path First (OSPF) rerouting by far
    corecore